DEMO SAMPLE 4

Cable in Conduit Conductor (CICC) quench
modelling



This demo gives an example of quench simulation for a Central Solenoid (CS). CS is divided into 6
geometrically identical sections (see Fig. 1) wounded by Cable-in-Conduit Conductor (CICC). Each
section consists of 20 CICC double pancakes. CS cooling is provided by supercritical helium (SHe)
flow in parallel for all 240 pancakes. Helium inlet is at the innermost turn of each pancake and outlet
is at outermost turn.

Quench occurs in CICC’s of section CS2L.
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Figure 1. 6 CS sections with lower/upper buffer zones



It is assumed that CS2L quench is initiated in each innermost turns of 40 CS2L pancakes at 1790s of a
regular plasma pulse, when constant and maximal currents (~40kA) excite different CS sections.

The VENECIA model of CS includes CS and an external cooling circuit.
CS is modelled as 240 CICC pancakes (C1-:-C240+C487-:-C726), 120 inlet (C241-:-C360) and 126
outlet (C361-:-C486) tubes, 6 supply (C733-:-C738) and 6 return (C727-:-C732) feeders.

The external cooling circuit is modelled as 2 SHe heat exchangers (C741, C744), circulator (P1), 2
control valves (A1, A2), 2 supply/return cryolines (C739, C740, C742, C743), 12 relief valves (A3-:-
A14) with opening pressure of 2 MPa and a set of quench line tubes (C745-:-C765) with the quench
tank (V289).

Control valve Al is used to mitigate pulsed heat load from CS on the cryoplant. Control valve A2
provides protection of a SHe circulator when the pressure difference between the outlet and inlet of
the circulator is close to the design limit on the pressure head.

In each pancake, CICC is individually modelled with 240 pares of SHe flows in the bundle and central
channel which interact through mass- heat exchange.

The CS model includes individual descriptions for magnetic field B, strains &, AC losses and currents
I distribution in each of 240 CICC. These space/time descriptions for CS section CICC are provided
through inputs as external data.

Electrical field in CICC is calculated using a tabular description of superconductor properties
parameterized via B, dB/dr, ¢, I and temperature T.
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Figure 2. Hydraulic scheme of CS cooling cirquit.

An inter turn and inter pancake heat exchange in CICC is modelled by solving a 2D thermal diffusion
problem over CS cross-sections normal to the cable axis. Each cross-section includes 3360 (240x14)
stainless steel cable conduits, inter turn and inter pancake insulation, intersection insulation and
upper/lower buffer zones. 5 cross-sections taken for the simulation are meshed with 3.5 million nodes

in total.



ALPHYS I CA GmbH UNTERREUT, 6, D-76135, KARLSRUHE, GERMANY WWW.ALPHYSICA.COM

Figure 3. Meshing over a 2D CS cross-section. 700,000 nodes
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Figure 4. Extraction from CS hydraulic model: CS2L cooling circuit with position for cross
sections #1 and #5
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Figure 5. Hydraulic scheme of quench lines

Hydraulic parameters of CS cooling circuit and quench lines are listed in Table 1 and Table 2.

Table 1. Parameters of CS cooling circuit

Channels Cross section  Hydraulic ID,  Length, Comments

# area, mm? mm m
C1-C240 256.2 145.7 Cable space
C487-C726 63.6 9 145.7 Central pipe
C241-C360 78.5 10 5 Supply tubes
C361-C486 78.5 10 5 Return tubes
C727-C732 2165 52 53 Return feeders
C733-C738 2165 52 53 Supply feeders
C740,C743 5632 85 39 Cryolines
C742, C739 5632 85 95 Cryolines

C741, C744 20000 40 30 SHEXs




Table 2. Parameters of quench lines

Channels Cross section Hydraulic ID, Length, Comments

# area, mm? mm m
C745 31416 200 20 L3 lines
C746 31416 200 18 L3 lines
C747 31416 200 26 L3 lines
C748 31416 200 11 L3 lines
C749 31416 200 43 L3 lines
C750 70700 300 3 L3 lines
C751 31416 200 8 L3 lines
C752 31416 200 8 B2 lines
C753 31416 200 19 B2 lines
C754 31416 200 21 B2 lines
C755 31416 200 4 B2 lines
C756 31416 200 6 B2 lines
C757 31416 200 5 B2 lines
C758 31416 200 6 B2 lines
C759 31416 200 29 B2 lines
C760 31416 200 12 B2 lines
C761 31416 200 26 B2lines
C762 31416 200 17 B2 lines
C763 70700 300 31 Line between L3 & B2 levels
C764 96200 350 52 Common line to quench tank
C765 96200 350 110 Common line to quench tank

Volume V289 models a 80K quench tank of 720 m”.

This demo example is aimed to show VENECIA capabilities in modelling complex thermal hydraulic
processes associated with CICC quench in CS, in particular

- assessment of a minimum heat pulse energy for quench initiation;

- simulation of normal zone evolution resulted in temperature (T) and helium pressure (P) rise
caused by Joule heat deposited during quench;

- investigation of protection strategy against overpressure in a cryogenic circuit via controlled
opening of relief valves and evaluation of instant parameters of helium flows released from the
CS;

- prediction of temperature & pressure rise along quench lines.

Simulation of 40 CS2L conductors quench allows revealing the conditions for helium release from CS
through the relief valves and the maximum helium parameters along the quench lines.

The demo simulation is only illustrative and has certain limitations due to taken for consideration the
simplified quench scenario. Simulated CS behaviour is reduced to a 10 s quench at constant currents
in CS sections that corresponds to overheat conditions without quench protection and fast energy
discharge. Modelling of complex phenomena occurred in a cryomagnetic system in case of quench
and CICC protection against overheating requires more detailed description beyond demo purposes
and is a subject of contractual investigations.



Initial conditions for modelling

The quench is initiated by a uniform heat pulse applied to 40 innermost turns of CS2L CICC’s when
the other 200 CICCs of CS have zero currents.

A 4000W/m heat pulse with a 0.2s duration is applied at the end of plasma pulse (1790s) when a 10s
plateau of constant maximum currents in sections (~40 kA) is supported. The magnetic field in the
“fired” innermost turns is close to the maximal value of 12 T.

As initial thermal-hydraulic conditions for CS quench simulation, pre-determined data are used from
input files CS3600.BS and HEAT2D_1.BAS that gathered in a CS simulation at normal operation.
For illustration, the plots below shows CS behaviour at normal operation for a 1800s regular plasma
pulse.
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Figure 6. Variation of CICC temperature in 6 middle double pancakes of six CS sections CS3L,
CS2L, CS1L, CS1U, CS2U, CS3U during a 1800 s plasma pulse. Normal operation
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Figure 7. Temperature variation along pancake #102 (middle of CS1L). Normal operation

The full set of inputs for the demo quench simulation is available in the input files DEMOA4.IN and
HEAT2D_1.IN. Files VENECIA.MAT and ETABS5D_1.IN describe thermal properties of different
materials in the CS assembly and electrical properties of CICC, correspondingly.



Basic simulated results for CS quench started in CS2L section

Temperatura, K
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Temperature evolution of CICC bundle for adjacent pancakes #61 and #62 of quenched CS section
CS2L
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Pressure, MPa
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Helium pressure in cable space for adjacent pancakes #61 and #62 of quenched CS section CS2L



Velocity, m/s

Helium velocity in cable space for adjacent pancakes #61 and #62 of quenched CS section CS2L
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Helium mass flow rate in cable space for adjacent pancakes #61 and #62 of quenched CS section
CS2L
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Temperature map for cross section #1 of CS model in vicinity of adjacent sections CS3L and CS2L
at t=0.25s
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Temperature map for cross section #1 of CS model in vicinity of adjacent sections CS3L and CS2L
at t=5.0s
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Temperature map for cross section #1 of model in vicinity of adjacent CS sections CS3L and CS2L
at t=5.0s (zoom-in of marked region from previous plot)
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Helium temperature variation in 6 inlet feeders (C733, C734, C735, C736, C737, C738, each 53 m
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Helium pressure variation in 6 inlet feeders for six CS sections
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Helium mass flow rate variation in 6 inlet feeders for six CS sections
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Local distribution of magnetic field B along CICC in pancakes #61 & #62
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Local distribution of strain along CICC in pancakes #61 & #62
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Variation of Joule heat along CICC in pancakes #61 & #62 at constant current of 40KkA.

NOTE: Plateau of Joule heat at a level ~180kW/m is explained by limited input data on CICC property in file
ETAB5D_1.IN, where the tabulated maximal temperature is given as 300K, so for T>300K electric field

E(T, B, dB/dr, & 1)= E(300K, B, dB/dr, & ).
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Variation of opening for relief valves A4, A6, A8
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Evolution of helium pressure and temperature inside quench tank V289 due to helium release via
safety valves
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Evolution of temperature along selected portion of quench lines (see total layout of quench lines in
Fig. 5)
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Pressure head variation in circulator P1 limited by control valve A2 opening
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